Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glia ; 71(11): 2591-2608, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37475643

RESUMO

Brain function relies on both rapid electrical communication in neural circuitry and appropriate patterns or synchrony of neural activity. Rapid communication between neurons is facilitated by wrapping nerve axons with insulation by a myelin sheath composed largely of different lipids. Recent evidence has indicated that the extent of myelination of nerve axons can adapt based on neural activity levels and this adaptive myelination is associated with improved learning of motor tasks, suggesting such plasticity may enhance effective learning. In this study, we examined whether another aspect of myelin plasticity-changes in myelin lipid synthesis and composition-may also be associated with motor learning. We combined a motor learning task in mice with in vivo two-photon imaging of neural activity in the primary motor cortex (M1) to distinguish early and late stages of learning and then probed levels of some key myelin lipids using mass spectrometry analysis. Sphingomyelin levels were elevated in the early stage of motor learning while galactosylceramide levels were elevated in the middle and late stages of motor learning, and these changes were correlated across individual mice with both learning performance and neural activity changes. Targeted inhibition of oligodendrocyte-specific galactosyltransferase expression, the enzyme that synthesizes myelin galactosylceramide, impaired motor learning. Our results suggest regulation of myelin lipid composition could be a novel facet of myelin adaptations associated with learning.


Assuntos
Galactosilceramidas , Bainha de Mielina , Camundongos , Animais , Bainha de Mielina/metabolismo , Galactosilceramidas/metabolismo , Axônios/metabolismo , Neurônios/metabolismo , Oligodendroglia/fisiologia
2.
Glycoconj J ; 39(5): 619-631, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35639196

RESUMO

A transition of sialic acid (Sia) species on GM3 ganglioside from N-acetylneuraminic acid (Neu5Ac) to N-glycolylneuraminic acid (Neu5Gc) takes place in mouse C2C12 myoblast cells during their differentiation into myotube cells. However, the meaning of this Sia transition remains unclear. This study thus aims to gain a functional insight into this phenomenon. The following lines of evidence show that the increased de novo synthesis of Neu5Gc residues in differentiating myoblast cells promotes adhesiveness of the cells, which is beneficial for promotion of differentiation. First, the Sia transition occurred even in the C2C12 cells cultured in serum-free medium, indicating that it happens through de novo synthesis of Neu5Gc. Second, GM3(Neu5Gc) was localized in myoblast cells, but not in myotube cells, and related to expression of the CMP-Neu5Ac hydroxylase (CMAH) gene. Notably, expression of CMAH precedes myotube formation not only in differentiating C2C12 cells, but also in mouse developing embryos. Since the myoblast cells were attached on the dish surface more strongly than the myotube cells, expression of GM3(Neu5Gc) may be related to the surface attachment of the myoblast cells. Third, exogenous Neu5Gc, but not Neu5Ac, promoted differentiation of C2C12 cells, thus increasing the number of cells committed to fuse with each other. Fourth, the CMAH-transfected C2C12 cells were attached on the gelatin-coated surface much more rapidly than the mock-cells, suggesting that the expression of CMAH promotes cell adhesiveness through the expression of Neu5Gc.


Assuntos
Ácido N-Acetilneuramínico , Ácidos Neuramínicos , Adesividade , Animais , Camundongos , Fibras Musculares Esqueléticas/metabolismo , Mioblastos/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Ácidos Neuramínicos/metabolismo
3.
Biochem Biophys Res Commun ; 608: 52-58, 2022 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-35390672

RESUMO

Sialylation, the final stage of post-translational modification of proteins, is achieved in the Golgi apparatus and is related to the malignant phenotype of cancer. Disialylation of ganglioside (GD3) by St8sia1 and polysialylation by St8sia2 and 4 have been shown to be related to malignant phenotypes; however, di/oligosialylation by St8sia6 is still unknown. In this study, we analyzed the malignant phenotype of St8sia6 and found that upregulation of St8sia6 in melanoma B16 cells increased anchorage-independent cell growth, which was not due to sialic acid cleavage by a sialidase. Moreover, unlike other sialyltransferases, St8sia6 localized to the endoplasmic reticulum (ER). We found that the localization to the Golgi apparatus could be regulated by swapping experiments using St8sia2; however, the malignant phenotype did not change. These data demonstrate that the enhancement of anchorage-independent cell growth by St8sia6 is not due to its localization of ER, but is due to the expression of the protein itself.


Assuntos
Retículo Endoplasmático , Neoplasias , Sialiltransferases , Processos de Crescimento Celular , Retículo Endoplasmático/enzimologia , Retículo Endoplasmático/metabolismo , Gangliosídeos/metabolismo , Complexo de Golgi/metabolismo , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Sialiltransferases/metabolismo
4.
J Biol Chem ; 292(17): 7040-7051, 2017 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-28275055

RESUMO

Gangliosides (sialic acid-containing glycosphingolipids) help regulate many important biological processes, including cell proliferation, signal transduction, and differentiation, via formation of functional microdomains in plasma membranes. The structural diversity of gangliosides arises from both the ceramide moiety and glycan portion. Recently, differing molecular species of a given ganglioside are suggested to have distinct biological properties and regulate specific and distinct biological events. Elucidation of the function of each molecular species is important and will provide new insights into ganglioside biology. Gangliosides are also suggested to be involved in skeletal muscle differentiation; however, the differential roles of ganglioside molecular species remain unclear. Here we describe striking changes in quantity and quality of gangliosides (particularly GM3) during differentiation of mouse C2C12 myoblast cells and key roles played by distinct GM3 molecular species at each step of the process.


Assuntos
Diferenciação Celular , Gangliosídeo G(M3)/química , Mioblastos/citologia , Animais , Proliferação de Células , Ceramidas/química , Cromatografia Líquida de Alta Pressão , Cromatografia em Camada Delgada , Glicoesfingolipídeos/química , Lipídeos/química , Espectrometria de Massas , Camundongos , Mioblastos/metabolismo , Ácido N-Acetilneuramínico/química , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...